Approximative graph pyramid solution of the E-TSP
نویسندگان
چکیده
The traveling salesman problem (TSP) is difficult to solve for input instances with large number of cities. Instead of finding the solution for an input with a large number of cities, the problem is transformed into a simpler form containing smaller number of cities, which is then solved optimally. Graph pyramid solution strategies, using Bor̊uvka’s minimum spanning tree step, convert, in a bottom-up processing, a 2D Euclidean TSP problem with a large number of cities into successively smaller problems (graphs) with similar layout and solution, until the number of cities is small enough to seek the optimal solution. Expanding this tour solution in a top-down manner, to the lower levels of the pyramid, leads to an approximate solution. The new model has an adaptive spatial structure and it simulates visual acuity and visual attention. The model solves the TSP problem sequentially, by moving attention from city to city, and the quality of the solutions is similar to the solutions produced by humans. The graph pyramid data structures and processing strategies provide good methods for finding near-optimal solutions for computationally hard problems. Isolating processing used by humans to solve computationally hard problems is of general importance to psychology community and might lead to advances in pattern recognition.
منابع مشابه
Approximating TSP Solution by MST Based Graph Pyramid
The traveling salesperson problem (TSP) is difficult to solve for input instances with large number of cities. Instead of finding the solution of an input with a large number of cities, the problem is approximated into a simpler form containing smaller number of cities, which is then solved optimally. Graph pyramid solution strategies, in a bottom-up manner using Bor̊uvka’s minimum spanning tree...
متن کاملImproved Approximations for TSP with Simple Precedence Constraints
In this paper, we consider variants of the traveling salesman problem with precedence constraints. We characterize hard input instances for Christofides’ algorithm and Hoogeveen’s algorithm by relating the two underlying problems, i. e., the traveling salesman problem and the problem of finding a minimum-weight Hamiltonian path between two prespecified vertices. We show that the sets of metric ...
متن کاملCs 598csc: Approximation Algorithms 1 the Traveling Salesperson Problem (tsp) 1.1 Tsp in Undirected Graphs
In the Traveling Salesperson Problem, we are given an undirected graph G = (V,E) and cost c(e) > 0 for each edge e ∈ E. Our goal is to find a Hamiltonian cycle with minimum cost. A cycle is said to be Hamiltonian if it visits every vertex in V exactly once. TSP is known to be NP-complete, and so we cannot expect to exactly solve TSP in polynomial time. What is worse, there is no good approximat...
متن کاملETH Library Improved Approximations for TSP with Simple Precedence Constraints⋆
In this paper, we consider variants of the traveling salesman problem with precedence constraints. We characterize hard input instances for Christofides’ algorithm and Hoogeveen’s algorithm by relating the two underlying problems, i. e., the traveling salesman problem and the problem of finding a minimum-weight Hamiltonian path between two prespecified vertices. We show that the sets of metric ...
متن کاملA reactive bone route algorithm for solving the traveling salesman problem
The traveling salesman problem (TSP) is a well-known optimization problem in graph theory, as well as in operations research that has nowadays received much attention because of its practical applications in industrial and service problems. In this problem, a salesman starts to move from an arbitrary place called depot and after visits all of the nodes, finally comes back to the depot. The obje...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Image Vision Comput.
دوره 27 شماره
صفحات -
تاریخ انتشار 2009